
Interpretable sonification of HTML and CSS,

an exploration.
Jeroen Oliemans

LIACS
Media Technology program, Leiden

University
jeroenoliemans@gmail.com

ABSTRACT

Is it possible to make an interpretable sonification of the web? To

answer this question the Musical Browser was build, The Musical

Browser makes it possible to explore the web, and sent the HTML

to the parser. The parser translates this model into data which a

sound synthesizer understands. The synthesizer software turns this

model into sound. This separation made it easy to experiment with

the sonification.

Several tests were conducted with custom created, preselected and

random webpages. These test provided a granular approach to

interpretation. From webpages with a distinct property, (very

dark webpage) to more average webpages (colorful webpage). For

the last test predictions were made about webpages after hearing

the sonification of these webpages.

The result is that the musical browser’s sonification is

interpretable for the HTML tags and some style properties of a

webpage. But the sonification is not sufficient to make an exact

prediction of the visual display of the webpage.

1. INTRODUCTION

While thinking about the enormous mass of HTML on the World

Wide Web, the idea to use all these pages as an inspiration for art

came to mind. I am a big fan of electronic music, this, combined

with my knowledge as a front-end developer of webpages,

inspired me to build a musical browser.

The musical browser is not expected to create fantastic melodies,

but it is intriguing what the possible outcome of sonification

might be and what the structure of the compositions from all the

different websites will be like. One of the challenges is to find a

way to parse the web. The web has been here for a while now and

has seen many modification and enhancements which are still

available on the web today.

Another question is; what are the limitations in sonification of a

webpage? And, what are the elements that could be extracted

from a webpage?

2. HTML, CSS AND SEMANTICS

What is a webpage, how is it built and why is it structured the way

it is?

A website exists mainly of HTML, CSS files, and javascript for

enhanced interaction and behaviors. Webpages can inherit

multiple techniques such as flash and java applets. This research

has the focus on HTML and CSS because these are the essential

two languages to make a webpage.

Every webpage on the web needs HTML to display their content.

HTML is the structure for the content of the page. HTML

describes when to place a picture or a piece of text on the page.

HTML consist of a document full of tags and these tags can

contain content and inform the browser what type of content it can

expect.

Tags are called elements and are formed by the element name

enclosed into angular brackets. For example the paragraph

element is formed as follow <p>some paragraph text</p>. Other

tags require attributes to be rendered for example the image tag;

.

The stylesheet (CSS) controls how the tag or the content of the

tag is displayed. CSS can control color, placement, margins, and

font-styling. CSS is developed to separate the content of a

document from the presentation of the document. For example the

following code sets the font type for a header in a webpage.

h1{ font-family: Arial, Helvetica, sans-serif; }

The semantic web [1] is the promise for the web. The use of

semantics will increase in the future. Semantics make it possible

to provide aid to human and machine for understanding the

meaning of content.

HTML consists of structural, semantic and interactive tags [2]. A

small part of HTML is entirely meant to support invisible

functionalities of a web page. There are for example tags which

assist the search engines finding their results <meta>, tags to

display tabular date <table> and for web forms <input>. Semantic

tags give their content special meaning, for example the

tag provides emphasis to the content enclosed in the tags.

The list of available tags will change by future versions of HTML.

Today the most used version is HTML4, but many browser

producers have already begun implanting HTML5 which will be

cleaner and uses more semantic tags.

3. RESEARCH QUESTIONS AND TOPICS

This research tries to find answers to the following questions:

1. Which elements or properties of a webpage are suitable

for sonification?

a. Why are these elements or properties chosen

for sonification?

b. In what way will the elements and properties

be interpretable?

c. Are there resemblances between the code and

the sound? And if so, which resemblances?

2. To what extend is it possible to interpret the sonification

on the properties chosen?

3. Is it possible to recognize subjective characteristics, like

color and font styles, without learning?

It is also interesting to see if it is possible to understand the

differences in the sonification after an introduction about the

elements which are sonified. In a way that users can make a

prediction how a webpage could sound.

The actual semantic value of the semantics in the HTML will not

be interpreted. Because these values are highly abstract, for

example the tag for paragraph (<p>) has a web semantic value for

paragraph. This tag lets the world know that it contains “text”. To

transfer the meaning “text” into sound is beyond the scope of this

sonification project.

The translation of the visible part of the webpage will be

researched marginally. The visible parts that are taken into

measure are the average brightness, the temperature of the color

(red - blue/green) and if the average font of the webpage is with

serif of sans-serif.

There are many ways to change the visual display order of a

webpage. For example; JavaScript tricks, large images and server-

side scripting could alter the way the page displays to the user

significant, while the order of HTML remains the same. Therefore

the music will be based on HTML and not the visual display of

the webpage.

4. MUSICAL BROWSER

The application is constrained to make it easier to compare

different websites. For example, for each webpage only the

HTML and the first stylesheet are collected. Some webpages

serve multiple stylesheets but that would make the application

unnecessarily complex. The application would also be slower,

because all the additional HTTP requests and processing. The

consequence is that only webpages with one relevant stylesheet

can be compared.

The musical browser is an application consisting of three

elements: a browser with a user interface built in Adobe Air [3], a

parser build with Processing [4] and a musical interpreter built

with max/MSP [5].

figure 1: musical browser interface

The browser makes it possible to interact with the web just like a

normal browser reads the HTML and searches for the stylesheet

link. This data is passed to the parser with an XMLSocket. The

browser also displays the HTML in a text window next to make it

possible for the user to follow along with the generated tag

sounds.

The parser parses all the tags available in the HTML. The parser

contains a matching list with all the available tags, each tag in the

list is coupled with a pitch duration harmony and an amplitude

value. All the tags in the webpage are compared to this list. This

technique is known as parameter mapping sonification [6][7].

These parameters per tag are used in the Musical Interpreter to

create a specific sound for each tag. After reading all the tags, the

parser searches for the first stylesheet reference in the webpage,

and retrieves the stylesheet. The parser sends the stylesheet and de

HTML to the WebPageModel. The WebPageModel calculates an

average of all the color values and searches for all the font styles

and checks whether the style is “serif” (Times New Roman) or

“sans-serif” (Helvetica).

The difference between serif and sans-serif is the most obvious

separation in font-styles, these two types are always used in a

stylesheet as a fallback mechanism. First you define the font-

names you suppose to be available on the user’s computer, if the

fonts are not available the computer chooses its own “serif” or

“sans-serif” font. The created model is then sent to the

MusicInterface. The MusicInterface translates the webpagemodel,

including the tags, average color and the fontstyle into data which

the MusicalInterpreter understands. This last separation makes it

also possible to use multiple MusicInterfaces for other programs

for example SuperCollider.

The data from the musical interface is packed into a list and send

with OpenSoundControl (OSC) [8] to the Musical Interpreter,

see section Sonification for details. See figure 2 for a flowchart of

the parser.

figure 2: parser flow chart

5. SONIFICATION

This research of the sonification of webpages tries to get to the

heart of the HTML page by translating the basic elements of a

webpage, the tags, the color, and the font-styling into sound.

Therefore the content is left out, the content is not the thing that

makes a webpage a webpage; content could also be revealed by

paper or another medium. This research should make the diversity

of the tags and the grouping clear. The sound should make the

user aware of the structure and of the patterns used in the HTML

of the website. In short, the user should hear the world below the

visual representation of the webpage.

Frequency modulation synthesis (FM) [9] proved to be a good

technique to transfer the tags. FM is very flexible and makes it

possible to create interesting sound with a low performance cost.

The tags play on after one another and form the “melody” of the

sonification. All the available tags are divided into three groups,

to make it clear that HTML provides three main groups of tags;

structural, semantic and interactive tags. This makes it easier to

test the resemblance between the HTML code and the sounds. A

single FM-generator for all the tags is chosen to create unity

between the tags, but still diverse enough to recognize types,

groups and patters of tags.

Structure tags are the foundation of any webpage, like <body>,

<div>, and . These tags have a pitch in the lower spectrum

200-500Hz and. The most important structural tags like <body>

and <div> have a long duration.

Semantic tags give extra meaning to content, for example the

 tags, stands for emphasis which gives the content more

impact. The tags have an average pitch 700-1100 HZ. Their

duration is shorter than the structure tags, semantic tags used for

large content, like the <p> tag have a longer duration than tags

used for specific content for example the tag.

The interactive tags are the <a> “link” tag, but there are a lot of

others, forms are built with interactive tags like <input> for a

button or <select> for a dropdown menu. Interactive tags are one

of the main reasons that the web has grown so big. These tags

have a high pitch 1300-1500Hz and a short duration. This way

they can be easily separated from all the other sounds. For this

project the sonification of the tags is not influenced by the

stylesheet. Otherwise the sound of the tags would differ between

websites making it impossible to learn to recognize the tags (and

tag patterns).

To make it possible to interpret the font-style two sounds are

synthesized for each style, the average font-style in the webpage

determines which sound plays. For the serif fontstyle (with small

horizontal strokes) a fragile, nervous sound is generated, because

the font-style is more “nervous” than sans-serif. Every 3 seconds a

high pitch sine wave with an alternating amplitude envelope. The

sans-serif fonts are more clear and simple, if this style is more

common on the webpage visited then a bass drum will sound

every 3 seconds. Both sounds are easy to distinguish in the

sonification.

A crossfade is implemented between a set of multiple saw-waves

and a set of sine to make interpretations of the color values

possible. These two are chosen because the saw polyphone sound

gave me a dark and sinister feeling, the sine wave polyphone is

more vivid, sparkling and light. Both sets provide a complex and

layered soundscape, playing continuously because the whole

webpage is influenced by color. The crossfade is controlled by the

brightness of the total color. If the color is dark (low RGB values)

then the saw waves will be more prominent. If the color is light

the sine waves will be easier to hear. The tempo of these sounds

will be influenced by the color as well. The sound application

compares the average value of the green and blue color to the red

color value. The highest value is processed further. The offset

from the highest color value compared to the median 127 (255/2

) is subtracted, in case the red had the highest value, or added (if

green and blue have the highest value) to the base line values for

the duration of the waves. The result is that a red color increases

the tempo, and a blue/green color decreases the tempo of the

polyphone sounds.

All the interpretable elements are listed in the table (table 1).

Interpretable elements/ properties Result

HTML tags: Structural tags (<body>) Low pitch, 200-500Hz

HTML tags: Semantic tags (<p>) medium pitch, 700-1100Hz

HTML tags: Interactive tags (<a> <input>) high pitch, 1300-1500Hz

Font style: serif Sine wave every 3s

Font style: sans-serif Bass every 3s

Color: average element brightness is light Polyphone wave is dominant

Color: average element brightness is dark Polyphone saw is dominant

Color: average element tint towards red Increasing tempo of polyphone

Color: average element tint towards green/
blue

decreasing tempo of
polyphone

table 1: interpretable elements/ properties

Get the tags

Get the Tags

Webpage url

Steps Description Result / model

1 Receives the url
and the url to the
stylesheet (if
available)

2 The parser creates
a HTTP request
header to get the
stylesheet

3 If the CSS is
received than the
stylesheet is store
in a string

CSS style
Information

4 The URL is passed
to the ProHTML
library wich stores
the tags of the
webpage in a list

TagList

5 Then the webpage
model is made
with the following
data: list of the
HTMLTags, the
complete CSS file
and a list of HTML
elements which
could alter the
layout of the page.

This Class checks
for the HTML is
the positions still
matches the
structure of the
HTML, checks for
fonttypes, and the
average color in
the CSS file, wraps
it into a model and
sends it back to
the main Parse
Class

webPageModel

6 The main class
sends this model
to another Class:
MusicInterface.
This class makes
the model
understandable
for the
MusicalProcessor (
max/MSP). This
structure makes it
possible to make
another
MusicInterface
Class for example
for SuperCollider.

This class wraps
the context Model
(font, color etc),

MusicInterface

HTML

Steps Description Result / model

1 Receives the url
and the url to the
stylesheet (if
available)

2 The parser creates
a HTTP request
header to get the
stylesheet

3 If the CSS is
received than the
stylesheet is store
in a string

CSS style
Information

4 The URL is passed
to the ProHTML
library wich stores
the tags of the
webpage in a list

TagList

5 Then the webpage
model is made
with the following
data: list of the
HTMLTags, the
complete CSS file
and a list of HTML
elements which
could alter the
layout of the page.

This Class checks
for the HTML is
the positions still
matches the
structure of the
HTML, checks for
fonttypes, and the
average color in
the CSS file, wraps
it into a model and
sends it back to
the main Parse
Class

webPageModel

6 The main class
sends this model
to another Class:
MusicInterface.
This class makes
the model
understandable
for the
MusicalProcessor (
max/MSP). This
structure makes it
possible to make
another
MusicInterface
Class for example

MusicInterface

Get the CSS Stylesheet

Steps Description Result / model

1 Receives the url
and the url to the
stylesheet (if
available)

2 The parser creates
a HTTP request
header to get the
stylesheet

3 If the CSS is
received than the
stylesheet is store
in a string

CSS style
Information

4 The URL is passed
to the ProHTML
library wich stores
the tags of the
webpage in a list

TagList

5 Then the webpage
model is made
with the following
data: list of the
HTMLTags, the
complete CSS file
and a list of HTML
elements which
could alter the
layout of the page.

This Class checks
for the HTML is
the positions still
matches the
structure of the
HTML, checks for
fonttypes, and the
average color in
the CSS file, wraps
it into a model and
sends it back to
the main Parse
Class

webPageModel

6 The main class
sends this model
to another Class:
MusicInterface.
This class makes
the model
understandable
for the
MusicalProcessor (
max/MSP). This
structure makes it
possible to make
another

MusicInterface

Create Model

WebPageModel

 Process color

 Process fonts

Create Interface
for max/MSP MusicInterface

 Parameter
mapping
(tags)

Send with OSC

Osc data file

Steps Description Result / model

1 Receives the url
and the url to the
stylesheet (if
available)

2 The parser creates
a HTTP request
header to get the
stylesheet

3 If the CSS is
received than the
stylesheet is store
in a string

CSS style
Information

4 The URL is passed
to the ProHTML
library wich stores
the tags of the
webpage in a list

TagList

5 Then the webpage
model is made
with the following
data: list of the
HTMLTags, the
complete CSS file
and a list of HTML
elements which
could alter the
layout of the page.

This Class checks
for the HTML is
the positions still
matches the
structure of the
HTML, checks for
fonttypes, and the
average color in
the CSS file, wraps
it into a model and
sends it back to

webPageModel

Musical Interpreter

Musical browser

Parser

The decision was made not to let the context information (font

and color) influence the way the tags sound, to keep the tags

interpretable. Otherwise it would be too difficult to learn to notice

the different tags. This way the tag-sounds sonification resembles

the HTML and the context sonification resembles the CSS just the

way it works with a webpage.

6. TEST AND RESULTS

To verify the research questions, three tests were taken with the

application. The first test sonifies predefined and controlled

webpages. The second test is a field test on the web with

preselected webpages with one obvious dominant property. The

third test concerns random picked webpages without a dominant

property. The last test concerned predictions of how the webpage

would look after listening to the sonification.

First test: The sonification of the first test can be found here:

http://www.wonderolie.nl/musicalbrowser/#tests

For the first test several webpages and stylesheets were made. The

testpage includes almost all the available elements in HTML. The

test isolates all the sonification aspects and makes it clear if the

outcome sounds as expected.

The results of the first test were perfect. All the six pre-created

webpages resulted in the expected outcome. For example the

difference between the testpages with serif and sans-serif fonts is

very clear in the sonification of these pages.

Second Test: The sonification of the second test can be found

here: http://www.wonderolie.nl/musicalbrowser/#tests2

For the second test webpages are selected to isolate one of the

sonification properties. For example a website with a lot of white

elements or a webpage styled mostly with serif fonts. After these

tests several random webpages were picked and a prediction was

made what the sonification would sound like.

The second test proved that it is already more difficult for

preselected webpages on the web with a dominant property to

predict the outcome of the sonification. For example for the

webpage of “the guardian” it is clearly to be heard that the

webpage uses a lot of serif fonts. However the colorfulness of the

webpage cannot be extracted from the sonification of this

webpage. But if a website is analyzed by the user in advance than

it is possible to make a good prediction, see for example the test

of www.gothicfestival.be .

Third Test: The sonification of the third test can be found here:

http://www.wonderolie.nl/musicalbrowser/#tests3

The third test sonifies some random selected websites, and for

each website a prediction was made what the sonification would

sound like.

It appears that the predictions became more accurate after a few

predictions; this is probably caused by a learning effect. It does

however indicate that the outcome is consistent and therefore

predictable.

The fourth test concerns predictions the other way around. Is it

possible to predict the visual layout of the HTML and the style

properties, after listening to the sonification.

Fourth Test: The sonification of the fourth test can be found

here: http://www.wonderolie.nl/musicalbrowser/#tests4

For this test the browser was positioned with the web window of

the screen. The several sites were visited and recorded. Based on

the sonification predictions were made. After the prediction the

color values and the webpage itself were matched to the

prediction.

It seemed possible to give a proper estimation about the average

color of the elements, the position of clustered links and the font-

style.

During the four tests the interpretation of the tags remains the

same. The question was whether the sound resembles the HTML

code, and if it is possible for someone familiar with HTML to

detect patterns? It is possible to detect patterns that are in the

HTML, mostly combinations with links and containers for

example:

link `

The tag is a structural element which has a low pitch and the

<a> is an interactive tag which had a high pitch. These patterns

are easy to detect. To detect all the other tags and other patterns is

more difficult. Another aspect of the tags that is easy to detect is

the beginning of a webpage, most often very structural, thus a lot

of low pitches.

In the end it can be said that proper knowledge of HTML is

essential to make anything out of the tag sounds. The user needs

to be able to create a mental model of the webpage and the code

structure to make it possible to detect the resemblances. Then the

user has the ability to make a prediction about the sonification of

the tags or the “melody”. For example a blog listing has a lot of

semantic tags, like headings (<h1>) and paragraphs (<p>). This

melody is different than the homepage of a news website which

mainly contains a lot of links (<a>) in structure tags ().

7. CONCLUSIONS AND DISCUSSION

In short the conclusion is that the musical browser’s sonification

outputs interpretable information about the HTML tags and some

style properties of a webpage. But this information is not

sufficient to form a proper prediction of how the webpage will

look.

Sonification of elements and properties of webpages is possible.

The musical browser makes it possible to extract some of the

properties of a webpage by sound. It is possible to some extent to

predict the outcome of the musical browser if someone is familiar

with HTML. It is for example possible to hear where clusters of

links are positioned within the webpage (group of high pitched

tag sounds), or if the webpage has a complex layout (lots of low

pitched sounds).

Without HTML knowledge it is more difficult, for example the

color value. The problem is that most of the time dark elements go

together with a light background, making the visual experience of

the webpage light as well, which does not correspond with the

“dark” saw sound. The solution might be to capture a screenshot

to analyze the brightness of the pixels of the webpage.

The expectation of browsing several websites and generating

different pieces of music did not came true. The sonification is

less different from website to website than expected. This may be

caused by the fact that almost all the websites sounds more or less

the same because of ongoing standardization on the web. Another

http://www.wonderolie.nl/musicalbrowser/index.html#tests
http://www.wonderolie.nl/musicalbrowser/index.html#tests2
http://www.gothicfestival.be/
http://www.wonderolie.nl/musicalbrowser/index.html#tests3
http://www.wonderolie.nl/musicalbrowser/#tests4

reason may be that websites are much alike without images and

background images.

In the introduction I ask myself the question whether the data on

the web could be used for inspiration for (traditional) arts.

Unfortunately this is not the case with the current application.

How could the system be improved? To my opinion the current

application needs to add the ability to make a sonification of the

design. The code of websites may be more the equal than

expected, the design still differences from each site. The current

application will be better suited for HTML and CSS analysis than

the visual appearance of the webpages.

The musical browser could be improved by implementing a

system to calculate the impact of the properties. For example a

webpage has 3 paragraphs, 1 very long, black paragraph, and 2

very short, yellow paragraphs; the current application says that the

website is “light”. The user however perceives the webpage as

“dark”. The font-style suffers from this same principle. This will

make the sonification more accurate. Another addition could be

bitmap analysis; analyzing the color of a screenshot of the

webpage could increase the accuracy of the sonification of the

website from a users’ perspective.

Another addition could be the sonification of the content for

example the type of the content could be played by a type of

instrument and the duration could be determined by the length of

the content.

Is there a purpose for sonification of the web? Sonification of total

webpages will not be that useful, nevertheless sonification of

special webservices could prove very useful. For example it could

be useful to make a sonification for weather messages. The sound

could inform (trained) users very quickly. Or one could build a

system which informs stock brokers for the several stocks they are

interested in.

8. ACKNOWLEDGEMENTS

The author likes to thank Edwin van de Heide for project

supervision, motivation and technical support.

9. REFERENCES

[1] Berners-Lee, Tim; Hendler, James; Lassila, Ora (17 May

2001). "The Semantic Web". Scientific American.

[2] W3C tags

[3] Adobe Air, http://www.adobe.com/products/air

[4] Processing, http://www.processing.org

[5] Max/MSP, http://www.cycling74.com

[6] Thomas Hermann; Helge Ritter, Sound and Meaning in

Auditory Data Display, 2004, Proceedings of the IEEE

special issue: engineering and music.

[7] C. Scaletti, “Sound synthesis algorithms for auditory data

representations,”in Auditory Display, G. Kramer, Ed. 1994,

Addison-Wesley.

[8] OpenSoundControl, http://opensoundcontrol.org

[9] Charles Dodge, Thomas A. Jerse , Computer Music -

Synthesis, Composition, and Performance- 2nd edition, 1997

http://www.sciam.com/article.cfm?id=the-semantic-web&print=true
http://www.w3.org/TR/html401/index/elements.html
http://www.adobe.com/products/air
http://www.processing.org/
http://www.cycling74.com/
http://opensoundcontrol.org/

